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ABSTRACT

The Qp norm and the Qp operator-norm of an m X n complex

matrix A = (dij) are given by

1/p
lal_= (=

p\
..
p | Jl J

i) 1

and

‘,AHP = max{(Ax[p :x €¢", ix| =1},

respectively. The main purpose of this paper is to investigate

the multipicativity of the Qp norms and their relation to the

Qp operator-norms.
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1. Introduction and Statement of Main Results.
L g N VN W W Y Y e aaata e ate e

For 1

A

p $ @ the Qp norm of an m X n matrix A = (Uij) € C

is defined as

m n 1/p 4
(1.1) Al = (2 5 ja P ]

Pi=1 j=1 Y R
where for the case p = ® (which need not be treated separately) we have,

of course,

Al = 1i Al = m: b
|Alg pimml lp T*j Ch

. Vo

. . . . mn
That is, | [p on ngn is simply the ordinary Rp norm on C,

These 2p norms must be distinguished from the Qp operator-norms

on men’
1.2 Al = A cx ec x| =1}, “
(1.2) 1all, = max{jax [ = x € € x| = 1) {
Ostrowski [4], investigated some sub-multiplicativity properties ’;
i
of the Qp norms in (1.1), including the following: ?

THEOREM 1.1 [4, Theorem 7.] If 1 <$p <2 and if A,B are

rectangular matrices so that the product AB exists, then

;
|

1

s |A}_IB] . 1

B[ < (Al 18] :

et amnm e mm e e e v e e anmeie el S A RE




THEOREM 1.2 [4, Theorem 8.]) I1f p,q satisfy 1 <$p <2 <g,

% + % =1, and if A, B are rectangular matrices su that AB exists,
then

AB| < |A] |B} |

|AB] < 1A D]

AB} < |A| (Bf .

jaB] < 1Al I8l

The results in Theorem 1.2 are analogous to Holder's Inequality.
While Ostrowski proved that for 1 § g < 2 < p the inequalities
in Theorems 1.1 and 1.2 may fail to hold, we are able to generalize his

results as follows:

1,1 _ . 1 d
THEOREM 1.3. If 1 s$qs$2¢<p, Pt g7 1, and if A€ Qka’ E
B € Cyxp> then i‘
a8} < k172/Pla) |8
p

x

1.1 ‘

THEOREM 1.4. If 1Sq$2Sp, S+ =1, and A€ C 4, [
B€ Ciy, then ) ’
t

1-2/q ‘

< .

|aBl € n TR ALIBL, ]

|AB] < o' "%/9)a] |B| . 3

q q'"'p tij

A unified proof for Theorems 1.1-1.4 is given in Section 2. {

A

Note that if A =a = (ul,...,ak) is a row vector and ﬁ

B = b*= (Bl,...,Bk)* is a column vector (* denoting the adjoint), then L

AB is the usual inner product (a,b) on Qk; hence Theorems 1.1 and 1.3

give in this case the two inequalities

t
-
v
3




A

[(a,b) |

bl , 1¢ <2,
lalpl |p p

HA

1-2/p 5 0.
I(a,b)] < k Jal Ibl, p 22

and Theorems 1.2 and 1.4 yield the Holder Inequality

=13 o] s (Bla®) T2 1p09) < 1al bl
(1.3) |(a,b)] =] 2 o.B.| £ (2 ]a, 3 |B. = lal bl _,
i=p ! i=1 ! ji=1 ! P g
1 1
21, -+ >=1.
P P g
A norm N on anu is commonly called (sub-) multiplicative if

in addition to the ordinary norm properties
N(A) > 0, A#0,
N(A) = | AIN(A), A€,
N(A+B) < N(A) + N(B),
we also have,
N(AB) s N(A)N(B)

for all A,B€ C _ .
~nxXn
Obviously, if N is a norm on gnx“ and p > 0 is a fixed
constant, then uN 1is a norm on an“ too. This new norm may or may

not be multiplicative. Tf it is, we call p a multiplicativity factor

for N. That is, p is a multiplicativity factor for N if and only if

N(AB) S uN(AIN(B), ¥ A,BE€ Enxn'

If Mo is a multiplicativity factor for N then clearly, so is

any 4 with p 2 Ho- In fact we proved more:

2 pu.»

e ey o -

L T S,




THEOREM 1.5 [1, Theorem 4.}

(i) If N isanormon € . then N has multiplicativity

factors.¥*

(ii) A constant p > 0 1is a multiplicativity factor for N

if and only if

max{N(AB) : N(A) = N(B) = 1}.

1t

>
W2y

Thus, Hy is the optimal (smallest) multiplicativity factor for N if

and only if

N(AB) < pyN(AIN(B) ABe C

<~nxn

with equality for some nonzero matrices A = Ay B = By

We observe now that matrices A, B whose upper left entry is 1 and
all other entries vanish, yield equality in Theorems 1.1 and 1.2. Similarly,
matrices A, B all whose entries are 1, give cquality in Theorems 1.3 and
1.4. Hence, Theorems 1.1-1.5 immediately provide the following result for our

Qp norms on square matrices:

COROLLARY 1.1. The optimal multiplicativity factor pp z “!-1
'p
for the norm ||  on C satisfies
—_— p — ~nmXn ———
1 , 1 Sp <2
(1.4) po= p(n) = .
p p ol 2/P, p 22,

If we define now the multiplicative norm

(1.5) Mp(A) = .lAlp, AEC

P ~nxn’

* This is not always the case for norms on infinite dimensional algebras;
see Section 2 of [2].

G ——— T e e P
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then Theorems 1.1-1.4 for square matrices, together with Corollary 1.1, can

be restated as,

COROLLARY 1.2. For all A,B € Coxn and all p,q with

P21, 1y

1
- =1, we have
P q —_

IA

M (AB) S M (MM (B),

A

Hp(AB) Y Mp(A)Mq(B),
MP(AB) < Nq(A)Np(B),

where in general, these inequalities are best possible.

The following relations between the QP norms in (1.1) and the g
£
£ operator-norms in (1.2) are special cases of Theorems 1.1-1.4, as i
will follow from Theorem 2.1 in the next section:
THEOREM 1.6. 11 AC ¢ and p o1, P b o e
— ~mxn - - P q - L
Al < Al ;
AL, € (AL !
All € m)l A} . ’
Al € ngmi Al ’

We remark that if 1 £ p £ 2 then Theorem 1.6 implies

Al < |A £
1Al < 1al, ;1
which is meaningful also for bounded linear operators on infinite ﬂp ]

!
I
spaces. If p > 2, we get r

AR

which again may be meaningful in the infinite dimensional case.




The main tool in proving Theorem 1.1-1.4 in Section 2 is the following

lemma which seems to be of independent interest.

n

LEMMA 1.1 (Main Lemma.) For every vector x€& (" and
1S$psqso, -1+1:1, we have
P 4 . :
1/p-1/q
1.6 x| € |x] €n x| .
(1.6) FE xl,
Our proofs in Section 2 also make use of the mixed Qp q HOTms
on C , introduced by Ustrowski |4] as
~mXxn
n m ).‘l/P 1/4
(1.7) Al :<2 (2 oja ! )
Prd A= =

The main result concerning these mixed norms is given in Theorem 2.1.

We emphasize that each one of the inequalities established in this
paper becomes an equality, either when we deal with matrices (including
vectors) with a single entry 1 in the upper left hand coruer and all
other entries 0; or when we deal with matrices all of whose entries

are 1. Thus, none of our inequalities in this paper can be improved.




2. Further Results and Proofs.

Proof of the Main Lemma. The fact that [x[p Is an increasing
function of p, p 21, is well known (e.g. [3]); and this is the
statement of the left inequality in (1.6).

We write now Holder's Inequality in (1.3) as

n
2 a.f.

. it
1=1

n /s n 1/t
( 2 l“ilb) (.E [ﬁill) , s 21, é + 5= 1.

i=] 1=1

HA

Thus, for s = q/p, t = q/(q-p) and any x = (§

1’°°"'°n
have
n n n p/q n 1-p/q
kP = 31617 = s1EIPas (2]El9) (2 1)
i=1 i=1 i=1 i=}
= oP(/P-Va) P
q
and the right inequality in (1.6) follows. 0

Recall now the definition of the norm MP(A) in (1.5) for square

matrices. In an analogous way, for rectangular matrices A€

) we
~XTL

define two different multiples of IAlp as follows:

(2.1) MEGA) = p (Al
(2.2) MO(A) = pp(n)|A|p,

where up(n) is given in (1.4).

Clearly, for square matrices we have

MP(A) = Mé(A) = M;(A).




v
@
v
¥
H
¥

. . n i
On the other hand, viewing from now on a vector x €( as an l

(2.3) Mé(x) = up(n)lx!p;

4
n X1 matrix, our nolation becomes £
|

hence we can reformulate our Main Lemma in the following compact way:

[
2
Q.

LEMMA 2.1. If p 21 =1, then

T e—
o3 —

n

(2.4) | x| M('l(x), ¥ xceC.

A

Proof. If p £ q, then (2.4) is the right inequality of (1.6).
If p2gq, then ¢ £ 2, so M&(x) = }x}q, and (2.4) becomes the left ; J

inequality of (1.6). Il E"

Having the definitions in (2.1), (2.2), we prove next:

~ S 1 1
LEMMA 2.2. If A= (“ij) €C X ? and p 21, 5 + =
2.5 A s M (A s ’
( ) l Ipyq q( ) b
2.6 A § M"(A). '
( ) l lp,q p( )

Pgoof. Denoting the columns of A by a Syl Lemma 2.1 and

o
(2.3) yield

A |

(g Lyveees Tagl ) g € 1y, ami ) | :

P»9q np

1

BeI(Tayl g [ag] ) [q = Mg 1ALy = M (),

and we have (2.5).




2.3

For (2.6) we use again Lemma 2.1 and (2.3) to obtain

|A]

t

A

MIENISTNE J

pog = I0arlpes Tagl )l alp

pp(n)((‘alipv“-» [a :Hp(n)‘AIp:M;(A)_

alpllp

In [4] Ostrowski gives the following proof to the following lemma.

LEMMA 2.3 [4, Section 35.] For p 2 1, % + % = 1, and matrices
A, B for which AB exists, we have
2.7 | AB < jal (B ,
(2.7) lp = 1AL
: ¢ T
< )
(2.8) asl < Bl ia .
where T denotes the transpose.
Proof. Let A€ ank, Bégkx“, and set
k
Yij =,z aePey
Then by Holder's Inequality we have,
P . 5 P { X q)! P/
LT 25 aw%’ < 2 lugl” L gpyl
So
m n k p/q
|aB|P = 3 znl S|P 5 (3B 9) = ab P,
P =1 j=1 P j=1<Q=1 2] [Ap Plg,p

and (2.7) is established.

For (2.8) we exchange the roles of p and q to obtain




k k p/q
P s 3 AP s a1 ;
BRI 2:1l£3,2JI (g:1| 2l I
hence
m k p/y p
[AB[P < [BPP 5 (3ia., %) =-gPualy
1P, ig: | A R p
P Pri=) =) P
and the lemma follows. 0

With the help of Lemmas 2.2 and 2.3 we can now prove the main
result of this section:

THEOREM 2.1. If p 2 1, =+

=1, and if A, B are rectangular

=Rl
L | s

matrices so that AB exists, then

(2.9) Mé(AB) < Né(A)Né(B),
{2.10) M;(AB) < M;(A)M;(B),
(2.11) HL(AB) < ML(A)NG(B),
(2.12) M;(AB) < Mé(A)M;(B),

where M' and M" are defined in (2.1), (2.2).

Proof. Let A€ me and Be C Then, by (2.7) and (2.5)

k kxn”

we have

IAB < TA[IBI o (A MO(B),

and multiplying both sides by up(m) yields (2.9).

bo
’




Since Mé(AT) MP(A)  then by (2.8) and (2.5),

i |AB!
p

A

T
w1 aTL

‘ T ‘ ,
< 1Bl w@aly = |Bi My,
! BNt = B M)

P

so multiplying by pp(n) gives (2.10). .

Next, we use (2.7) and (2.6) to obtain

AB| < [A] |Bj < A} _M"(B),
[ABJ € TALIBI, S 1AL M (B)
and multiplying by pq(m) gives (2.11).

Finally, by (2.8) and (2.6),

o T ‘ T .
\B| < (B lA S B MU(A) = MT(A)IB]
[AB, % 1B AT B B MGUAT) = (TR

so multiplying by pp(n) vields (2.12). o

We observe pow that Theorems 1.1-1.4 are merely restatements of

(2.9)-(2.12).

Proof of Theorem 1.6. 1f A €C ~ and x& C", we think as

before of x as an n X 1 matrix; hence, ’
| A = M"(Ax), M = .
| xlp p( x) p(x) lep

So by (2.10),

§
IIAH = max |Ax] = max M"(Ax) <€ M"(A) max M'"(x)
P g =t o |x| =1 P Poxp =1 P
p P p
= M3(A) = w () A, g

and we get the first part of the theorem. }
'




Similarly, if A and x are as above, then by (2.12),

AL = max [Ax] = max M7(Ax) < M'(A) max M"(x)
b | x] =1 P x| =1 P 4 [xi =1 4
1% "P ‘p

= H('](A) = uq(m)iA!q,

P

]

and the proof is complete.

Inequalities for products of more than two matrices which are
treated by Ostrowski in |4], can be extended in a manner entirely

analogous to our results in this paper.
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